ペロブスカイト太陽電池用 電荷輸送材料のご紹介

株式会社奥本研究所

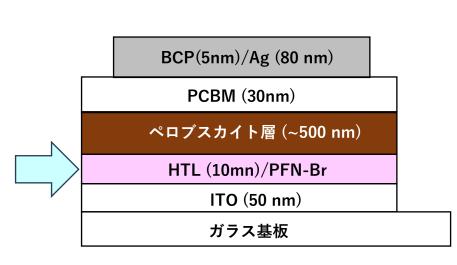


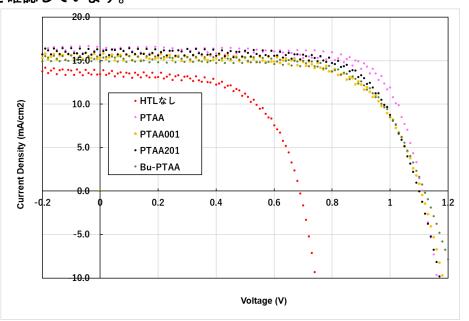
材料ラインナップ まとめ表

材料名	用途	種別	蒸着/塗布	номо	LUMO
РТАА	正孔輸送	高分子	塗布	-5.29 eV	-2.29 eV
Bu-PTAA	正孔輸送	高分子	塗布	-5.31 eV	-2.32 eV
Oc-PTAA	正孔輸送	高分子	塗布	-5.31 eV	-2.32 eV
PTAA001	正孔輸送	高分子	塗布	-5.15 eV	-2.31 eV
PTAA201	正孔輸送	高分子	塗布	-5.37 eV	-2.18 eV
V-PTAA	正孔輸送	高分子	塗布・硬化型	-5.19 eV	-2.26 eV
OPHT101	正孔輸送	低分子	蒸着&塗布	-5.31 eV	-2.31 eV
OPET201	電子輸送	低分子	蒸着	-6.57 eV	-4.11 eV
OPET311	電子輸送	低分子	蒸着&塗布	-6.37 eV	-3.81 eV

奥本研究所 PTAA誘導体のご紹介

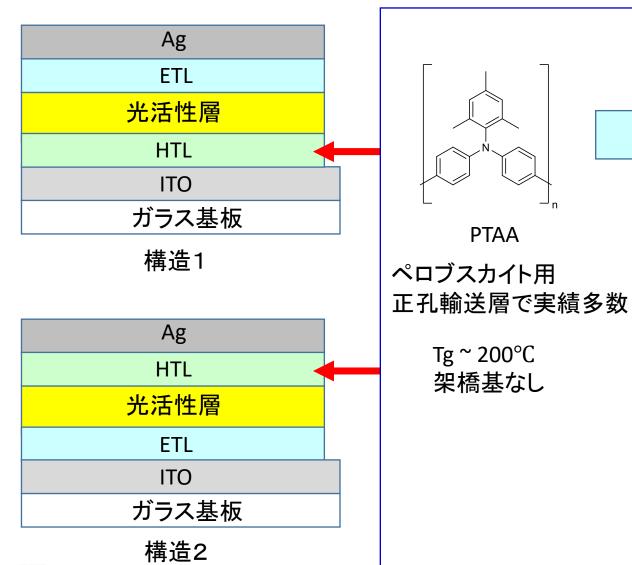
■ PTAAの化学構造を変化させた誘導体5品のラインナップがあります。

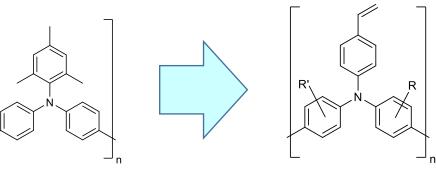

※HOMOは溶液の酸化電位を測定し、NPD (HOMO 5.41eV, 0.50 V Ag/Ag+)を基準として算出。 LUMOは溶液の吸収端(HOMO-LUMOエネルギー差)と上記HOMO準位から算出。


ペロブスカイト太陽電池 評価結果

■ 当社PTAA誘導体によって、高性能ペロブスカイト太陽電池の実現が可能です。

HTL材料	Jsc cm²/Vs	Voc V	FF	PCE
比較)HTLなし	13.5	0.69	0.61	5.6%
РТАА	15.7	1.11	0.77	13.4%
PTAA001	15.3	1.11	0.67	11.4%
PTAA201	15.7	1.10	0.72	12.4%
Bu-PTAA	14.9	1.12	0.69	11.5%


当社評価結果。他社様評価結果ではより高い性能を確認しています。

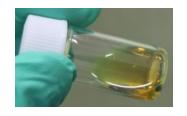


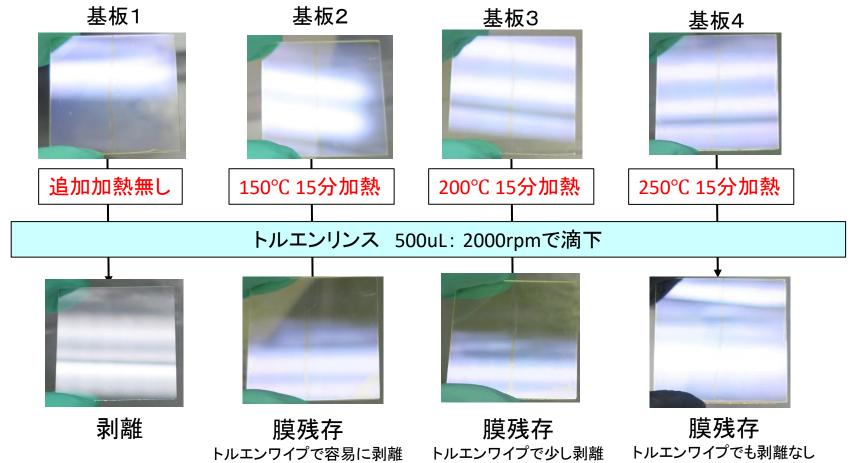
V-PTAA 熱硬化性HTLの狙い

■ ①重ね塗りを可能とします。 ②物理的強度の増強。

PTAAの基本性能維持 架橋基あり→熱硬化型

V-PTAA


成膜後の架橋により、


- ①上塗りの際の溶出なく、 上層との混ざり合いもない。 (Ag電極も塗布可能)
- ②物理的な強度を高めるとともに ドーパントの動きを抑制し、 寿命改善を期待。

V-PTAA 熱硬化実験

■ V-PTAAは成膜性に優れ、150°C以上の熱硬化によりトルエン溶出性が下がります。

- 1. 48mg/1.5mlトルエン溶液調整(0.2umフィルタ濾過)
- 2. ガラス基板上スピンコート(2000rpm, 45sec)
- 3. 100℃ 5分乾燥
- 4. ナイフで傷入れ

